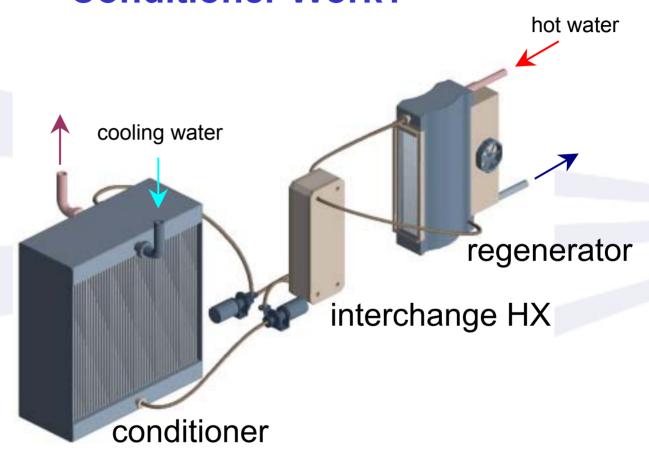
Advanced Liquid-Desiccant Technology

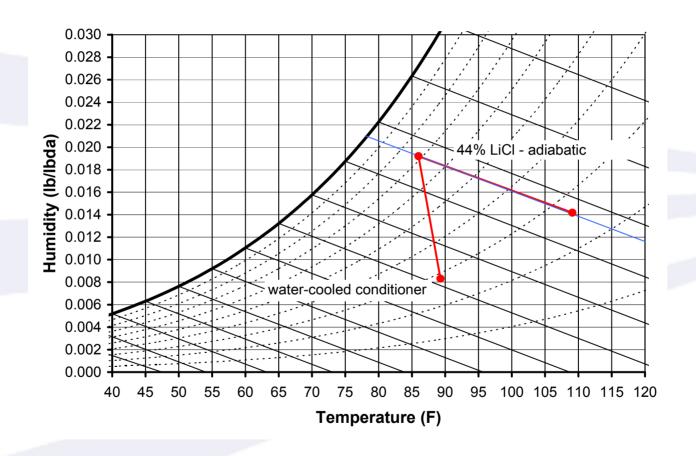

Dr. Andrew Lowenstein Principal Investigator AIL Research

> DE Peer Review Washington, DC December 2, 2003

Overview

- Move liquid desiccant technology from industrial to HVAC applications
- Develop a new generation of liquid-desiccant conditioners and regenerators based on low-flow technology
- Package the new desiccant technology in a rooftop design that is familiar to the HVAC trade
- Address pervasive IAQ problems; increase ventilation while controlling humidity
- > Add cooling to DE systems
- > Simplify installation of DE systems

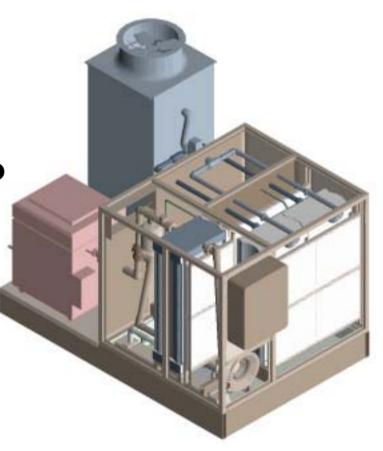
How Does a Liquid Desiccant Air Conditioner Work?


What advances have been made in liquid desiccant technology?

- > Very low flow rates of desiccant
 - Flows reduced by factor of 10 to 50
 - No sprays or drip pans
 - Droplets completely suppressed
- > Continuous cooling of desiccant
- ➤ Wicking contact surface
- > Plastic heat exchanger technology

What Benefits do Liquid Desiccants Systems Provide?

- > Excellent dehumidification
 - Air does not have to be cooled below dewpoint
 - Can handle high ventilation loads
 - Dry cooling coils operating at higher temperatures
- Heat and mass transfer in a single component
 - low pressure drops
 - high "specific" cooling
 - Low surface area leads to small size
- Low heat "dump back"
- > Good COP at low regeneration temperatures
 - 0.54 COP at 160 F
- Potential for low first cost and operating costs


A Liquid Desiccant Conditioner both Dries and Cools

AILR OA-6000

- ➤ Components developed with NREL support
- **➤ Design funded by ORNL**
- > Roof-top air conditioner
- ➤ Low-flow technology for zero desiccant carryover
- **>**6,000 cfm; 100% outdoor air
- >Almost 100% latent cooling
- >250 lb/h water removal
- >Avoids overcooling/reheat

Engineering Specifications

▶Process Air Flow: 6000 cfm

➤ Tower Water: 75 gpm

≻Tower Air Flow: 6200 cfm

➤ Tower Make Up: 1.0 gpm

≻Desiccant: LiCl

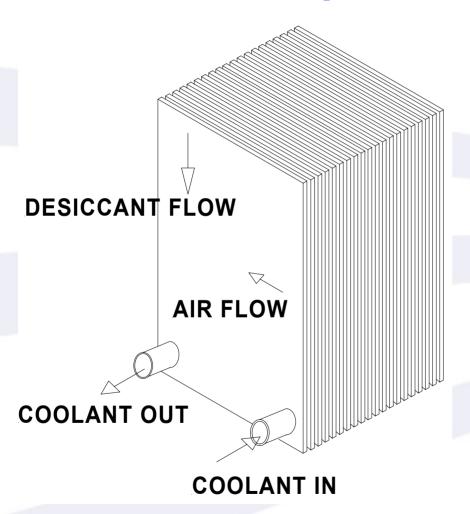
Desiccant Flow: 5 gpm

➤ Regen Air Flow: 800 cfm

➤ Electrical Service: 6.0 kW

➤ Gas Service: 500,000 Btuh

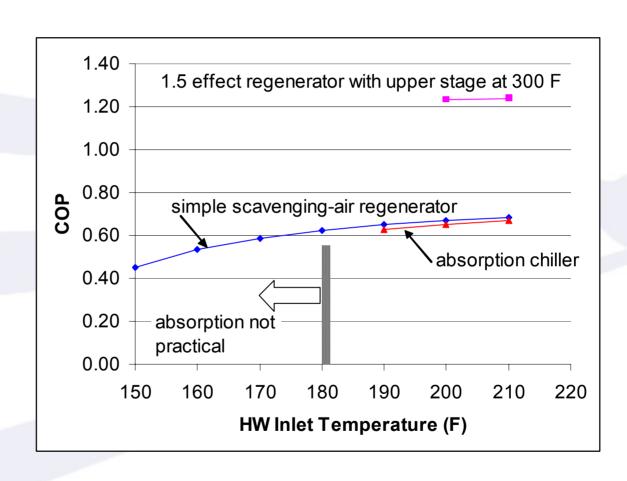
OA-6000 Alpha Prototype


OA-6000 Alpha Prototype

OA-6000 Alpha Prototype

How is Low-Flow Technology Implemented?

- →Water-to-air HX
- **→Plastic plates**
 - **→Low cost**
 - →Resist corrosion
- Wick distributes desiccant
- →Patent-pending design developed with NREL support
- **→Performance confirmed**by NREL



6,000-cfm Water-Cooled Conditioner

Liquid-Desiccant Systems Can Run on Low Grade Heat

- ➤ COP over 0.6 with 180 F hot water
- ➤ Excellent match to DE
- ➤ Advanced systems with COPs over 1.2

Liquid-Desiccant Systems will offer serious competition to electric cooling/dehumidification

Early markets will be:

- > Where latent cooling has high value
 - Ventilation in humid climates (DOAS)
 - Control indoor humidity
- > Where DE heat is available
- Where utility rates favor gas over electricity

Dedicated Outdoor Air Systems are an important application where gas-fired LD systems now can compete

Many manufacturers have recently introduced electric DOASs for ventilation air and high latent loads

- >condenser reheat
- >air/air heat exchange
- >enthalpy recovery with solid desiccants

Liquid Desiccant System will have important size and weight advantages

For 6,000-cfm Outdoor Air System

```
Condenser Reheat
    195" x 96" x 70"; 6,000 lb
Air/Air Heat Exchanger (6,700 cfm)
    118" x 84" x 74"; 6,020 lb (air handler)
    88" x 60" x 69"; 1,150 lb (20 T condenser)
Enthalpy Recovery/Solid Desiccant
    293" x 98" x 74"; 11,750 lb (air handler)
    88" x 60" x 69"; 1,150 lb (20 T condenser)
Liquid Desiccant System
    122" x 80" x 98"; 4,100 lb ship/ 5,600 lb operating
    132" x 80" x 77"; (second generation)
```


Liquid Desiccant System allows downsizing of central AC

Office Building in the Southeast									
	Full Year Operation (heating costs not included)								
	3120 ventilated hours								
	\$0.08 per kWh								
	\$0.80 per therm								
	80% boiler efficiency								
		Vent	Missed	Reheat &	Comp	Recirc	Fan	electric	annual
	DX	Rate	Latent	Regen	Power	Fan	Pump	annual	cost
	Tons	cfm	%	therms	kWh	kWh	kWh	kWh	dollars
DX Base Case	100	6,000	0.01%	2,839	170,725	72,527	19,269	262,521	\$23,273
LD Precondition	81	6,000	0.00%	11,099	130,522	60,563	27,351	218,436	\$26,354
Advanced LD	81	6,000	0.00%	6,058	130,522	60,563	27,351	218,436	\$22,321
LD with DG	81	6,000	0.00%	0	130,522	60,563	27,351	218,436	\$17,475

Commercialization Strategy

Key Assumptions

- Successful field demonstrations necessary to attract early sales as well as a manufacturing partner
- Controlled growth until product proves itself
- Sufficient demand from "high value" applications to support initial manufacturing at low volume
- Product can be sold at a profit during early stage of commercialization
- > DE and solar applications will be important early sales due to unique characteristics of LD system

Commercialization Strategy

Schedule

- > Three field demonstrations starting summer 2004
- ➤ Six pre-commercial sales with 2005 delivery; mix of industrial, DE, solar, commercial building applications
- > High COP regenerator to be field tested summer 2005
- Modest expansion of production starts following successful 2004 demonstrations
- > 20 to 30 units delivered in 2006
- > Sales and service partner on board in 2005

Current Status

> Performance

- Zero carryover demonstrated in over 1,000 hours of conditioner operation
- Latent and sensible cooling verified by NREL

> Maintenance

- No degradation in conditioner performance in over 1,000 hours of operation
- Schedules for changing filters reasonable but not yet determined

Current Status (continued)

> Lifetime

- No degradation observed in conditioner
- Materials problems in regenerator now being addressed; long life remains to be proven

> Selling Price

- Prototypes cost about \$100 K; \$120 K fully instrumented (includes boiler and CT)
- Early sales at \$10 to 14 per cfm
- At higher production levels, manufacturing cost should be consistent with \$5 per cfm selling price

Conclusion: The Future Looks Promising for Liquid Desiccant Systems

